
Collider-Accelerator Department
Brookhaven National Laboratory, Brookhaven Science Associates

Upton, New York 11973

V210 Datacon Master VME Module
User Manual

(v210Manual.doc)

October 2004
R. Michnoff

1.0 OVERVIEW..2

2.0 HARDWARE BLOCK DIAGRAM ...2

3.0 VME MEMORY MAP ...3

4.0 I960 MEMORY MAP ...6

5.0 SHARED MEMORY COMMUNICATIONS PROTOCOL...9

5.1 INFORMATION BLOCK DESCRIPTION...9
5.2 INSTALLING MESSAGE DESCRIPTOR BLOCKS ..11
5.3 USE OF NULL POINTERS..12
5.4 INTERRUPT HANDLING ...12

6.0 DATA STRUCTURE DIAGRAM..13

7.0 DRAWING NUMBERS..14

 2

1.0 Overview

This document describes the V210 Datacon Master VME module. An operational description
and detailed register definition is provided.

The V210 is functionally equivalent to its predecessor V110. The following enhancements have
been incorporated.

1. The obsolete ROM has been replaced with flash memory, providing the capability to
download the i960 firmware program via the VME bus.

2. The VME bus interface has been developed in an Altera gate array, eliminating the
obsolete VIC068 VME interface component.

3. The V210 hardware is contained on a single VME module. The V110 required a VME
module, buffer module and transition module.

2.0 Hardware Block Diagram

Following is a block diagram of the V210 hardware module.

Shared Bus
Arbiter

Shared RAM
512k x 32

Flash
128k x 8

80960CA
CPU

Private RAM
32k x 32

Datacon
Control/Status

Timeout Period

VMEbus
Interface

Line 1

Line 2

Line 3

Line 4

Event Mask
256 x 1

Event FIFO
256 x 8

Timestamp
32-bit

Event Link
Interface

status

Ev in

Ev out

status

status

 3

3.0 VME memory Map

The V210 VME memory and registers are mapped to A32 address space. The base address
offset is selected via jumpers for VME address lines A31..A22. The total VME address space
required for the V210 is 4 Mbytes.

Address
(offset from base)

Description Access Size

0x000000-0x000ef VME ID rd/wr D8 64 bytes
0x000000-0x1ffff Flash memory rd/wr D8 128 Kbytes
0x100000 Interrupt level rd/wr D8 1 byte
0x100001 Interrupt vector rd/wr D8 1 byte
0x100002 Interrupt enable

bit 0 – PIL available interrupt triggered by
CPU

bit 1 – VME command complete interrupt
triggered by CPU

bit 2 – CPU fail interrupt
bit 3 – Event FIFO overflow interrupt
bit 4 – Event link error interrupt

rd/wr D8 1 byte

0x100003 Interrupt status
Same bit definition as Interrupt enable

rd D8 1 byte

0x100004 Enable flash write
Set bit 0 to logic 1 to enable flash writes

rd/wr D8 1 byte

0x100005 Trigger CPU interrupt
Write any value to trigger interrupt

wr D8 1 byte

0x100006 Event link PLL is locked
bit 0 – logic 1 = PLL is locked

logic 0 = PLL is not locked

rd D8 1 byte

0x100007 Event link clock fail status
bit 0 – logic 1 = Event link no carrier

logic 0 = Event link OK

rd D8 1 byte

0x100008 CPU fail status
bit 0 – logic 1 = CPU failed

logic 0 = CPU OK

rd D8 1 byte

0x100009 Event FIFO full status
bit 0 – logic 1 = FIFO full

logic 0 = FIFO not full

rd D8 1 byte

0x10000a Event FIFO empty status
bit 0 – logic 1 = FIFO empty

logic 0 = FIFO not empty

rd D8 1 byte

0x10000b-0x10000f Unused 5 bytes
0x100010-0x100017 Scratch registers rd/wr D8 8 bytes
0x100018-0x10001f Unused 8 bytes
0x100020 Scratch register rd/wr D8 1byte
0x100021-0x10002f Unused 15 bytes
0x100030 Datacon Line 2 timeout

1 count = 2 microseconds
rd/wr D8 1byte

 4

Address
(offset from base)

Description Access Size

0x100031 Datacon Line 1 timeout
1 count = 2 microseconds

rd/wr D8 1byte

0x100032 Datacon Line 3 timeout
1 count = 2 microseconds

rd/wr D8 1byte

0x100033 Datacon Line 4 timeout
1 count = 2 microseconds

rd/wr D8 1byte

0x100034-0x17ffff Unused
0x180000-0x1800ff Event FIFO event mask

When bit 0 is set to logic 1, the detected
event code will be sent to the i960 event
fifo. The sub address 00-ff corresponds to
the event code.

rd/wr D8 256 bytes

0x200000-0x3fffff Shared RAM
This memory area is mapped to both VME
address space and i960 address space.

rd/wr D32 2 Mbytes

0x200000 Pending Intrpt List (PIL) entry index
Written by i960, read by VME
Valid values: 0-128

rd D32 4 bytes

0x200004 Pending Intrpt List (PIL) exit index
Valid values: 0-128

rd/wr D32 4 bytes

0x200008 Millisecond counter
This memory location is incremented by
the i960 increments on each occurrence of
the 1 millisecond interrupt. This is useful
as a diagnostic to indicate that the i960 is
alive.

rd D32 4 bytes

0x20000c VME command
A command is sent to the i960 by writing
one of the following command codes to
this register, followed by a write to the
‘Trigger CPU Interrupt’ register (base +
0x100005)
1 – Execute the i960 initialization code
2 – Execute the memory test
The i960 sets this memory location to 0
when the command execution is complete.

rd/wr D32 4 bytes

0x200010 Fault flag
A value of 0xf9f9 indicates that the i960
detected a fault condition.

rd D32 4 bytes

0x20002c Memory test error count
The number of errors that occurred during
the last executed memory test.

rd D32 4 bytes

0x200068 Text buffer index
The current index into the circular text
buffer.

rd D16 2 bytes

0x200070 Text buffer
The i960 writes ASCII characters to the
text buffer during program execution. This
provides a method to track the program
execution path.

rd D8 1 Kbyte

 5

Address
(offset from base)

Description Access Size

0x200700 Maximum number of PPM users
Valid values: 1-8

rd/wr D8 1 byte

0x200701 Maximum number of Datacon chans
Valid values: 1-4

rd/wr D8 1 byte

0x20070c Fiducial event code
Typically T0 event code
Valid values: 0-255

rd/wr D8 1 byte

0x20070d User 1 event code
Event codes for other users are assumed to
sequentially follow the user 1 code.
Valid values: 0-255

rd/wr D8 1 byte

0x200800 Pending Interrupt List (PIL)
This is an array of 128 Pending Interrupt
Block structures. The Pending Interrupt
List structure is defined in this document.

rd/wr 1 Kbyte

0x200c00 Interrupt Request Blocks
This is an array of 128 Interrupt Request
Blocks (IRB). The IRB structure is
defined in this document.

rd/wr 1 Kbyte

 6

4.0 i960 Memory Map

Following is the address map definition for the i960 memory and registers.

Address Description Access Size
0x10000000-
0x101fffff

Shared RAM
This memory area is mapped to both VME address
space and i960 address space.

rd/wr D32 2 Mbytes

0x10000000 Pending Intrpt List (PIL) entry index
Written by i960, read by VME
Valid values: 0-128

rd/wr D32 4 bytes

0x10000004 Pending Intrpt List (PIL) exit index
Valid values: 0-128

rd D32 4 bytes

0x10000008 Millisecond counter
This memory location is incremented by the i960
increments on each occurrence of the 1 millisecond
interrupt. This is useful as a diagnostic to indicate
that the i960 is alive.

rd/wr D32 4 bytes

0x1000000c VME command
VME sends a command to the i960 by writing one
of the following command codes to this register,
followed by a write to the ‘Trigger CPU Interrupt’
register (vme base + 0x100005)
1 – Execute the i960 initialization code
2 – Execute the memory test
The i960 sets this memory location to 0 when the
command execution is complete.

rd/wr D32 4 bytes

0x10000010 Fault flag
A value of 0xf9f9 indicates that the i960 detected a
fault condition.

wr D32 4 bytes

0x1000002c Memory test error count
The number of errors that occurred during the last
executed memory test.

wr D32 4 bytes

0x10000068 Text buffer index
The current index into the circular text buffer.

wr D16 2 bytes

0x10000070 Text buffer
The i960 writes ASCII characters to the text buffer
during program execution. This provides a method
to track the program execution path.

wr D8 1 Kbyte

0x10000700 Maximum number of PPM users
VME writes this value.
Valid values: 1-8

rd D8 1 byte

0x10000701 Maximum number of Datacon chans
VME writes this value.
Valid values: 1-4

rd D8 1 byte

0x1000070c Fiducial event code
Typically T0 event code. VME writes this value.
Valid values: 0-255

rd D8 1 byte

0x1000070d User 1 event code
VME writes this value.
Event codes for other users are assumed to
sequentially follow the user 1 code.
Valid values: 0-255

rd D8 1 byte

 7

Address Description Access Size
0x10000800 Pending Interrupt List (PIL)

This is an array of 128 Pending Interrupt Block
structures. The Pending Interrupt List structure is
defined in this document.

rd/wr 1 Kbyte

0x10000c00 Interrupt Request Blocks
This is an array of 128 Interrupt Request Blocks
(IRB). The IRB structure is defined in this
document.

rd/wr 1 Kbyte

0x50000000 CPU run LED
Write any value to flash front panel LED.

wr D8 1 byte

0x60000000 Datacon Line 1 rd/wr D32 4 bytes
0x60000004 Datacon Line 2 rd/wr D32 4 bytes
0x60000008 Datacon Line 3 rd/wr D32 4 bytes
0x6000000c Datacon Line 4 rd/wr D32 4 bytes
0x60000010 Datacon Line 1 Status

bit 0 - /dav_gat data avail – logic 1 when data avail
bit 1 - timeout – logic 1 when timeout
bit 2 – parity error – logic 1 when parity error

rd D32 4 bytes

0x60000014 Datacon Line 2 Status
Same bit definition as Line 1 Status

rd D32 4 bytes

0x60000018 Datacon Line 3 Status
Same bit definition as Line 1 Status

rd D32 4 bytes

0x6000001c Datacon Line 4 Status
Same bit definition as Line 1 Status

rd D32 4 bytes

0x60000020 Datacon Line 1 Reset
Write any value to reset line.

wr D32 4 bytes

0x60000024 Datacon Line 1 Reset
Write any value to reset line.

wr D32 4 bytes

0x60000028 Datacon Line 1 Reset
Write any value to reset line.

wr D32 4 bytes

0x6000002c Datacon Line 1 Reset
Write any value to reset line.

wr D32 4 bytes

0x70000000 Trigger PIL available interrupt to VME
Write any value to trigger interrupt.

wr D8 1 byte

0x70000001 Trigger command complete interrupt to VME
Write any value to trigger interrupt.

wr D8 1 byte

0x70000002 Reset sysfail flip-flop after power up
Write any value to reset sysfail.

wr D8 1 byte

0x80000000 Timestamp data (microseconds) rd D32 4 bytes
0x80000000 Reset timestamp

Write any value to reset timestamp to 0.
wr D32 4 bytes

0x90000000 Read Event code from FIFO rd D8 1 byte
0x90000001 Event FIFO empty status

bit 0 – logic 0 = not empty
logic 1 = empty

rd D8 1 byte

 8

Address Description Access Size
0x90000002 Event FIFO empty status

bit 0 – logic 0 = not empty
logic 1 = empty

rd D8 1 byte

0x90000003 Event FIFO full status
bit 0 – logic 0 = not full

logic 1 = full

rd D8 1 byte

0x800000004 Clear Event FIFO
Write any value to clear FIFO.

wr D8 1 byte

0xa0000000-
0xa001ffff

Private RAM rd/wr d32 128 Kbytes

0xfffe0000-0xffffffff Flash Memory
This memory region is also mapped to VME.

rd/wr d8 128 Kbytes

 9

5.0 Shared Memory Communications Protocol
(This section was edited from a document written by R. Warkentien, 11/1994, version 1.6)

In an attempt to be fast, concise, simple and flexible a communications protocol involving short
blocks of information in a common memory bank has been devised.
Extensive use is made of pointers and linkages. The allocation of memory space is left to an off-
board manager and the Datacon Engine will not check for incompatibilities.

5.1 Information Block Description

The protocol defines four types of information blocks:
1. Message Descriptor Blocks – contain information describing the size and location of a

Source Message Block and one or more Reply Message Blocks.
2. Source Message Blocks – contains the Datacon images to be sent
3. Reply Message Blocks – contains the received Datacon image, time and status info
4. Input Request Blocks

Message Descriptor Blocks are added to the Engine’s Trigger Dispatch Table using Input
Request Blocks. These blocks define the trigger event and provide a pointer to the Message
Descriptor Block to be executed upon occurrence of that event. Since more than one Input
Request Block may request the same trigger event, a system of linked lists is implemented via
pointers in the Message Descriptor Block.

Message Descriptor Blocks are dynamic in that they may be limited to one occurrence,
retriggered endlessly or chained together in complicated patterns.

Input Request Block (IRB)
 Request byte (bit0: 1=Interrupt, 0=Poll; bit1: 1=Insert, 0=Delete;
 bit6: 1=Failure, 0=Success, bit7: 1=Pending, 0=Done)
 PPM User Number byte (0-8; 0 = non-PPM)
 Time Event Code byte (0-255; 0 = ASAP)
 D.C. Line Number byte (1-4)
 MDB Pointer word (NULL pntr = delete)

A block of 100h words in shared memory is reserved for Input Request Blocks (IRB). The IRB
contains a pointer to a Message Descriptor Block (MDB), which the requestor has previously
created in shared memory; it also describes the trigger event that will call this MDB into action –
user number, event code and line number. The user may request that an interrupt be created
when the IRB is taken, or the Request byte may be polled to test for completion. The user marks
the IRB pending when ready; the Datacon Engine marks/clears failure as appropriate and clears
pending to indicate done. Once marked done, an IRB is ignored until again marked pending.
Note that MORE THAN ONE IRB may refer to the same trigger event.

 10

Message Descriptor Block (MDB)
 Link Backward Pointer word (reserved)
 Link Forward Pointer word (reserved)
 Subsequent MDB pointer word (NULL pntr = only 1
 Self pntr = repeat
 Valid pntr = chain)
 SMB Element Count short (1-16384)
 RMB Repeat Count byte (0-15)
 RMB Repeat Index byte (reserved)
 SMB Pointer word NULL pntr = IRB)
 RMB Pointer(s) word(s) (RptCnt+1 pointers)

The MDB in its simplest form contains a count of the number of Datacon elements in the Source
Message, a pointer to the Source Message Block (SMB), a pointer to the Reply Message Block
(RMB) and a pointer which denotes which MDB will be used on Subsequent trigger events.
Thus one can create a situation where:

1. The MDB is self canceling (NULL pointer)
2. The MDB retriggers forever (pointer to self)

The MDB can also accommodate certain special cases that arise from time to time. By
specifying a non-zero Repeat Count, the user may specify several reply (RMB) pointers within a
single MDB (multiple buffering). The same source (SMB) is used throughout and the
Subsequent MDB pointer only comes into play when the requisite number (Repeat Count + 1) of
triggers have occurred.

As noted above, the Subsequent MDB Pointer creates a mechanism whereby subsequent trigger
event handling is manipulated. This pointer may point to any valid MDB so that a complex
sequence is possible, if required.

Another special case involves the creation of sequential triggers, as complex trigger events
cannot be handled directly. Inserting a NULL pointer for the SMB Pointer and using the RMB
Pointer to point to a pseudo-IRB creates an equivalent construct, however (A true IRB is located
at an assigned location in memory and is scanned in background; thus it is not useful for this
application.) In fact the Repeat feature could be applied as well to create extremely complex
sequences.

The Repeat Index and Linkage pointers are reserved for the Datacon Engine use.

Source Message Block (SMB)
 Mode word (undefined)
{ D.C. Message (n) word } (D.C. transmit list)

 11

The SMB contains some number (SMB Element Count as defined in the MDB) of Datacon
images to be transmitted on occurrence of the appropriate trigger. The Mode word preceding the
images is an as yet undefined quantity reserved for future expansion.

Reply Message Block (RMB)
 Start Time Stamp word
 End Time Stamp word
{ D.C. Reply word
 Status short
 Differential Time Stamp short } (repeat per Element Count)

The RMB is a buffer area where the Datacon replies are stored. Each reply includes 16 status
bits and a 16-bit differential time stamp. In addition, a 32-bit time stamp is recorded upon
transmission of the first SMB image and receipt of the last reply.

RMB size in words = 2 * SMB_Element_Count + 2

A word about time stamps: The start and end time stamps are a count of the number of
microseconds since the last fiducial time event. Differential time stamps consist of the low order
16 bits of the true time stamp and must be referenced with the Start/End times to compute a real
time.

5.2 Installing Message Descriptor Blocks

Datacon Trigger Dispatch Table
The trigger dispatch table is a 3 dimensional array of MDB pointers as shown below. The MDB
pointed to is the first to be executed in the linked list. This table provides a unique entry for each
PPM user, event code and datacon line. PPM user index 0 is used for immediate command lists.

 { PPM User Number (8+1)
 Time Event Code (255)
 D.C. Line Number (4)
 MDB Pointer }

In order to successfully insert a timed Datacon request into the queue, the user must:

1. Secure exclusive use of sufficient memory space for both the SMB(s) and RMB(s).
2. Fill in the SMB(s) with Datacon images.
3. Secure and prepare the MDB(s).
4. Secure and prepare an IRB.

The Datacon Engine will insert the MDB Pointer at the appropriate location within the Trigger
Dispatch Table and signal completion by setting done in the IRB Request byte (and interrupt the
user if requested). If a MDB pointer already occupies the desired trigger location in the Dispatch
Table, a linked list is created using the Link Forward, and Link Backward pointers in the MDB.
This technique allows MDBs to be dynamically added or deleted with minimal disruption.

 12

The Subsequent MDB Pointer in the Message Descriptor Block is used to modify the MDB
linked list following a Trigger Event as though an IRB were executed. When a Subsequent
MDB Pointer is not NULL and does not point to itself, then after execution the MDB pointed to
by the Subsequent MDB is added to the linked list and the current MDB is deleted from the
linked list. By chaining MDBs, the user may create any number of Reply structures.

5.3 Use of NULL pointers

A NULL pointer may be used to delete requests when applied to the MDB Pointer. In the case
of the Subsequent MDB Pointer, NULL indicates “once only” operation. However, in the case
of the Input Request Block’s MDB Pointer, NULL will cancel ALL MDBs linked to that trigger.

A NULL pointer inserted for the RMB Pointer indicates that NO REPLY MESSAGE is expected
(but no status or time stamp is returned either).

A NULL SMB pointer is a special case denoting that the RMB Pointer actually points to an Input
Request.

5.4 Interrupt Handling

In order to ascertain when Reply Message Blocks are ready for processing, an interrupt may be
generated for every RMB that is filled. The VME interrupt level and vector are configurable.
Reading the Pending Interrupt List identifies an interrupt. Each event produces a two-word entry
in the list:

1. The trigger event descriptor (RMB#, user#, event#, line#)
2. The MDB pointer

When configured to interrupt on IRB completion, a similar event descriptor will be generated
(0xFF, user#, event#, line#) followed by the IRB pointer.

The possibilities for confusion regarding interrupt identification are many; therefore the Pending
Interrupt List is implemented as a 100h word circular buffer, where the following shared
memory locations are used to track the entry and extraction indexes.

A32 base + 0 pending entry index (4-byte value)
A32 base + 4 pending exit index (4-byte value)

Pending Interrupt List Structure
 RMB Index byte
 PPM User Number byte (0-8; 0 = non-PPM)
 Time Event Code byte (0-255; 0 = ASAP)
 D.C. Line Number byte (1-4)
 MDB Pointer word

 13

6.0 Data Structure Diagram

Link Backward Pointer
Link Forward Pointer

 Link Backward Pointer
Link Forward Pointer

Subsequent MDB Ptr SMB Element Count
SMB Element Count
RMB Repeat Count
RMB Repeat Index

 RMB Repeat Count
RMB Repeat Index

SMB Pointer SMB Pointer
RMB Pointer(1)
…
RMB Pointer(n)

 RMB Pointer(1)
…
RMB Pointer(n)

Mode
Datacon Message(1)
…
Datacon Message(n)

Start Time Stamp
End Time Stamp

 Start Time Stamp
End Time Stamp

Datacon Reply(1)
Datacon Status(1)
…
Datacon Reply(n)
Datacon Status(n)

 Datacon Reply(1)
Datacon Status(1)
…
Datacon Reply(n)
Datacon Status(n)

Request
PPM User Number
Event Code
Datacon Line Num
MDB Pointer

Reply Message Block Reply Message Block

Source Message Block

Input Request Block

Message Descriptor Block Message Descriptor Block

Dispatch Table
3-dimensional array of MDB Pointers

Event code

PPM User

Datacon Line

 14

7.0 Drawing Numbers

D09-2979 V210 Datacon Master Programmed Assembly
D09-2978 V210 Datacon Master Module Assembly
D09-2977 V210 Datacon Master Front Panel Detail
D09-2976 V210 Datacon Master Printed Wiring Board Assembly
D09-2975 V210 Datacon Master Printed Wiring Board Drilling
D09-2974 V210 Datacon Master Schematic
94028874 Phase Lock Loop Event Link Decoder Programmable Device

